
International Journal of Computer Trends and Technology Volume 68 Issue 4, 233-237, April 2020

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V68I4P135 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

A Functional View of Big Data Ecosystem
Alrawda Abdullatif Abdulhaleem Hamid

Lecturer, Department of Information Technology, Sudan University of Science and Technology

Khartoum, Sudan

Received Date: 18 March 2020

Revised Date: 30 April 2020
Accepted Date: 01 May 2020

Abstract - Big data analytics is a promising research

area, considering its capacity to add value in

decision making for both business and academia.

Massive numbers of tools available in the landscape

of big data analytics solutions are provided for

processing data in its lifecycle, namely, ingesting,

analytics, storage and visualization. Large number of

such solutions and sometimes interference among

functionality of constituent components are stones in

the road of implementing such solutions. In response

to these complexities, this work grouped similar

processing components in modules and showed

interdependencies among them to facilitate

synthesising big data analytics systems from extant

solutions.

Keywords - Big data, ingestion, batch analytics,

real-time analytics, interactive querying,

visualization, noSQL database, distributed file

system, in-memory, Apache Hadoop, HDFS,

MapReduce.

I. INTRODUCTION

 The unprecedented exponential growth of data in

the last few decades has been beneficial and

challenging for businesses at the same time.

Combining analytics results from both newly

emerging data sources and traditional business data

sources gives insightful sight supports decision

making. However, processing and reporting results of

big data analytics are challenging due to the nature of

the so-called big data. Big data require special

handling in order to address issues emerging from a

heterogeneity of data sources and data, high rate of

data generation and massive amounts of produced

data. So, handling big data requires combining

various processing paradigms, algorithms and tools in

every single stage, starting from acquiring data from

data sources and ending with presenting analytics

results for the end-user. Big data applications involve

business intelligence, information security,

meteorology, astronomy, bioinformatics, and others

[1], [2]. A thorough review of the big data ecosystem

has been achieved through tracking data flow through

the system and investigating system modules on the

way, then grouping modules that collaborate to

perform a broad task in one module. Each module,

then, has been examined in terms of functionality,

technologies and exemplary software solutions. The

objective of this work is to optimize the process of

engineering big data system that suits application or

business requirements by using only needed

submodules. The rest of this paper is organized as

follow: section two introduces the general essentials

of big data, section three is composed of four

subsections; each investigates a processing module in

the big data ecosystem, and section four draws

conclusions from the review.

II. BIG DATA

 The evolving web 2.0 applications and internet

of things (IoT) was accompanied by the exponential

growth of data from various data sources such as

social media, sensors, mail servers and e-commerce

transactions [3], [4] and others, leading to the

emergence of gold mines of data with new formats

and opens appetite of data scientists to analyse such

data. Such data is attributed to big data because it

differs from data generated from traditional data

sources in terms of volume, velocity and variety. Big

data is growing exponentially and streams almost

infinitely [4], which require distributed, parallel and

scalable storage and processing systems to cope with

such massive, continually changing data. Massive

volume and high velocity of data also trigger the need

for adopting a real-time processing model to handle

data in motion and using algorithms to speed up

processing such as map-reduce and direct acyclic

graph (DAG). Furthermore, a considerable portion of

data produced from big data sources is unstructured

[4], [6] or semi-structured and not compatible with

relational databases; as a result, NoSQL databases

turns dominant in the area of big data. The nature of

big data and business need for analysing such data

were motivators for the emergence of the big data

analytics trend [6]. In this paper, the researcher

thoroughly highlights vital modules involved in the

big data analytics process by studying their

functionality, implemented technologies and data

flow among the system. Figure 1 depicts modules

related to functional requirements, other modules

Alrawda Abdullatif Abdulhaleem Hamid / IJCTT, 68(4), 233-237, 2020

234

such as security and orchestration modules are out of

the scope of this review.

Fig. 1 Big data ecosystem modules

II. MODULES OF BIG DATA ECOSYSTEM

 Big data is collected from various data sources

such as data social media platforms, mail or web

servers and sensors [3], [6], etc. Thereafter, it is fed

into subsequent processing systems to eventually

reflect analytics results to the end-user. A big data

ecosystem could be viewed as a system of four

interrelated modules; an ingestion module, a

processing module, a storage module and a

presentation module.

A. Ingestion Module

 Data is collected (perhaps after crawling) from

different data sources and passed through several

stages before it is fed to the processing module.

Typical ingestion engine is liable of data acquisition,

decompression/ compression, extraction, filtering,

conversion and integration [7], [9], [10]. Data

connectors ask for authentication from data sources

to acquire data [10]. Popular connectors could be i)

database/ SQL connectors that allow connecting

relational databases using application programming

interfaces (APIs), vendors of DBMSs are providing

such connectors, Sqoop is an example, ii) proprietary

(or open-source) connectors, ii) custom connector

[11] designed for particular data source through

implementing APIs available by the data source. The

well-known communication models adopted by

connectors of real-time (stream) data sources are i)

publish-subscribe messaging where interaction is

taking place among a subscriber (consumer)

subscribing to a broker who manages a number of

topics (messaging queue) that receive messages from

a publisher (data source) to subscribing consumers

[11], [12], Apache Kafka and Amazon Kenisi are

example frameworks implementing publish-subscribe

messaging model [11] [12], ii) messaging queues

connectors where producer pushes messages to

message queues and consumer pulls them from these

queues, these connectors fit the cases when the

consumer pulls messages from publishers, RabbitMQ

and Amazon SQS are implementing messaging

queues model [11].

B. Analytics Module

Sub-modules that perform batch and real-time

analytics are located in this module [8], [13], [14].

a) Batch analytics provides high throughput when

processing massive data, but latency in performance

could last for hours or days for completing one job

[14]. Meanwhile, real-time processing is performed

in applications where time matters and results are

required in (near) real-time data production [15].

Map-reduce is an algorithm that allows writing

programs able to partition (map) large data set among

various processing units and process each

individually [14], [16], [17], then combine (reduce)

results of each processing step into a single result

[13]. Apache’s Hadoop MapReduce and Amazon’s

Elastic MapReduce (EMR) are example batch

processing engines that are implementing map-reduce

[14] for batch processing, directed acyclic graph

(DAG) is another algorithm used for batch processing

and implemented by Apache Spark [8].

b) Real-time analytics (also called stream) -in

contrast to batch analytics, which has a start and end

timings- requires timely, continuous processing of

data in motion (stream data) [13], [14], [15].

Processed streams are moved to memories in cluster

nodes before transforming them to disks [13], [15].

Apache Spark Streaming and Apache Storm are

examples of real-time processing engines where the

later is used for in-memory processing cases [8].

Interactive querying engines interacting with

analytics module and having a user interface

provided to facilitate querying a data set using

queries of dedicated query languages [13] like

Apache Spark SQL and HiveQL of Apache Spark

and Hive, respectively [8], [18].

 In general, all analytics operations serve two

categories of analysis, particularly direct analysis and

exploratory analysis, which requires a real-time

response (analytics) [1], [2]. Direct analysis answers

predefined questions through analytics techniques.

On the other hand, exploratory analytics is required

when there is no predefined question; in such cases,

the analytics engine searches data to find interesting

findings [1].

Data either flows from the analytics module to be

visualised through the visualization module or may

flow back to the analytics module for additional

processing.

Data collected from data sources are stored in the

storage module and forwarded to the analytics

module.

C. Storage Module

 Data collected from various data sources and

analytics frameworks as final or temporary analytics

results are stored and administered by this module,

waiting for additional processing or visualization.

Data stored either stored in a distributed file system

Alrawda Abdullatif Abdulhaleem Hamid / IJCTT, 68(4), 233-237, 2020

235

in the form of files with various file formats [10],

retrieved through MapReduce jobs or stored in

noSQL databases and retrieved via query languages

of underlying noSQL DBMSs [13].

a) Distributed File System

 A file management system for parallel processing

of data in multiple nodes, such file systems are

assumed to allow scalability, ability to store files of -

typically – any size, and reliability, so that data

availability is not affected by a node failure [19].

Hadoop distributed file system (HDFS) is a widely

used choice in today’s big data implementations.

Input and output of map and reduce functions are

read and written on the top of HDFS, HDFS is

Hadoop’s implementation of a distributed file system,

other implementations of distributed file systems are

IBM’s GPFS-FPO Intel’s Lustre[19].

NoSQL databases (also called stores) work as

stores for temporary and final analysis results [20].

HDFS is managing file system in processing units of

commodity servers (cluster) in data centres of the

organization or those provided by technology giants

in the form of the platform as a service (PaaS) [6],

like in Amazon web services (AWS) cloud [21] and

IBM’s cloud [22].

b) Serving Databases

 Non-relational database management systems

(DBMSs) are a key storage component in the big data

ecosystem [7] since they store data and analytics

results for further tasks such as visualization [8].

NoSQL databases cope with the nature of big data

and overcome shortcomings in relational databases

[2], [23] in terms of providing requirements of

databases that are distributed on a cluster(s) such as

availability, scalability and fault tolerance [8], [13]

and capability to handle non-structured and

unstructured data. NoSQL databases are not

following relational models [4]. Instead, they adopt

new data models compatible with emerging data

formats storage and processing needs [24]. It is

worthy of mentioning that there is no standard query

language for NoSQL databases since query languages

are data model-dependent [25], [26]. Data models of

NoSQL databases are key-value, document, graph,

and column-oriented [13].

Key-Value databases store data items in tables [5]

of two columns. Each item in such databases is a

combination of a unique alphanumeric string key

used for search operations, and a value contains data

itself in the form of primitive data type or an object

[24] [27], key and value relationship is specified by

the programming language used to create the object;

this dispenses the need for strict data model [24].

Amazon’s Dynamo Riak are examples of key-value

database management systems (DBMSs) [23], [27],

and Redis is an in-memory DBMS [28].

Document databases are higher versions of key-

value databases since they have the same data model

with more complicated values [23]. Document

databases use using key-value data model where the

key is an alphanumeric string that could represent a

path or a Uniform Resource Identifier (URI) [4], and

value is a collection of semi-structured texts such as

JavaScript Object Notation (JSON) and extensible

markup language (XML), unstructured texts such as

portable document format (PDF) and Word files

documents in addition to Binary JSON (BSON)

format which is used for storing images and videos

and binary serializing JavaScript object notation

(JSON) files, and therefore, improve processing

performance [4]. In contrast to key-value databases,

data in document databases could be queried either

through key or value [5], [27]. MongoDB and

CouchDB are examples of document DBMSs [23]

and MongoDB runs partially in-memory [28].

Graph databases have been used to model graph-

like data structures [29], [30], with highly

interconnected data; therefore, it could be represented

using graphs, particularly in the form nodes and

edges where nodes represent entities and directed

edges representing relationships among them, both

nodes and edges have descriptive attributes [4], [25].

Although there are various mathematical graph

models, property graphs are meant here. A property

graph is a directed graph where both nodes and edges

are labelled and can have any number of properties

(attributes) and any number of edges between any

two nodes. Properties represent metadata of edges or

nodes in the form of key-value pairs [29]. Neo4j and

Titan are examples of graph DBMSs [23], [30], and

Trinity and Bitsy are running in-memory [28].

Column-oriented databases are in contrast to

relational databases, where columns are defined on

table level and are fixed for each row, columns in this

data model are defined in row-level, this allows

having various numbers of columns for various rows

and adding columns whenever needed [5] which

supports scalability when data is varied [15], HBase,

Bigtable and Cassandra are example column-oriented

DBMSs [8] where IM Column Store is running in-

memory [31].

Data may need additional processing and flow back

to the analytics module, or it may flow to the

presentation module to be processed and presented in

human-readable formats.

D. Presentation Layer

Traditional visualization systems are not fulfilling

the requirements of big data visualization due to the

need for dynamic visualisation [2], [32] in some use

cases and the nature of big data. The task of

visualizing big data is a challenging task, to

overcome challenges like performance latency and

massive volume of data, techniques such as parallel

rendering, pre-fetching and caching relevant

predicted data to speed up response time [2], [32], in

addition to use of filtering, sampling and aggregation

Alrawda Abdullatif Abdulhaleem Hamid / IJCTT, 68(4), 233-237, 2020

236

techniques (such as clustering) to address issues of

presenting massive data [2], [32].

This is the front end of the big data ecosystem and

a vital component that adds value to decision-makers

[3], [6], [30], [33], [18]. It allows presenting (batch,

real-time) analytics results for end-user in visual form

(static or dynamic) [15], [32]. This way analyst’s eye

could easily elicit meaningful information via

relationships, trends, patterns [3], etc.

 Furthermore, as mentioned in section B, it could

provide an interface for user interaction through

querying data set for getting analysis results via

queries of dedicated query languages. The data set

could be reprocessed for getting more accurate results

[18]. Analytics results are visualized in traditional

reports or dashboards or graphical forms [14], [3] that

could be animated according to changes in data.

Pygal and Seaborn are example visualization Python

libraries [8], [33].

III. CONCLUSION

The field of big data pulls attention in both

academia and business. Thanks to extant technologies

and algorithms such as parallel processing,

distributed processing, batch processing, real-time

processing, noSQL databases, map-reduce, to name a

few. Integrating such technologies with these used

for data acquisition from sources of big data and

visualizing analytics results, and choosing from the

wide spectrum of available solutions in the software

market requires theoretically underpinning such

technologies in terms of the nature of data and

processing needs.

In response to complexities attached with the

development of customized solutions for big data

analytics, the whole process of big data analytics had

been studied, used technologies had been identified,

and grouped into modules sharing the same broad

objective. Based on this grouping, a graph shows

interdependencies among modules have been

designed. As shown in the previous sections, the

whole system is heterogeneous, and modules

themselves are heterogeneous in terms of used

technologies in sub-modules. The modules of the

system were dissected to illuminate data flow among

system modules, used technologies and example

solutions for different use cases. This way, with

knowledge of the party’s requirements, this work

serves in the synthesis of big data ecosystem modules

using existing technologies and tools. Modules

related to non-functional requirements of the system

have not been covered. Future research might extend

the investigation of covered modules to embrace

security and orchestration modules.

ACKNOWLEDGMENT

The author is thankful to Mr Izzeddin Elhassan,

who did the proof heading for this document.

REFERENCES

[1] Mani M, Fei S. Effective Big Data Visualization. Proc.
International Database Engineering & Applications

Symposium’21(2017) 298.

[2] Bikakis N. Big Data Visualization Tools. arXiv preprint
arXiv:1801.08336. (2018).

[3] Petrovska J, Ajdari J. Amazon’s Role in the Field of Cloud

Relational and NoSQL Databases: A Comparison Between
Amazon Aurora and DynamoDB. Proc. ISCBE’03, 13(214)

(2019).

[4] Venkatraman S, Fahd K, Kaspi S, Venkatraman R. SQL
versus NoSQL Movement with Big Data Analytics,

International Journal of Information Technology and

Computer Science. 8(12) (2016) 59-66.
[5] Moniruzzaman, A., Hossain, S., NoSQL Database: New Era

of Databases for Big Data Analytics Classification,

Characteristics and Comparison, International Journal of
Database Theory and Application, 6(4) (2013).

[6] Venkatraman R, Venkatraman S. Big Data Infrastructure,

Data Visualisation and Challenges. Proc. International
Conference on Big Data and Internet of Things’03, (2019)

13.

[7] Jagadish, V., Gehrke, J., Labrinidis, A., Papakonstantinou,
Y., Patel, J., Ramakrishnan, R., Shahabi, C., Big Data and Its

Technical Challenges, Communications of the ACM, 57(7)

(2014) 86-94.
[8] Bahga A, Madisetti V. Big Data Science & Analytics: A

Hands-on Approach. VPT; (2016).

[9] Erraissi, A., Belangour, A., Tragha, A., Meta-Modeling of
Data Sources and Ingestion Big Data Layers, Proc.

International Conference of Smart Applications and Data

Analysis for Smart Cities’02, paper 10.2139 (2018).
[10] Semlali BE, El Amrani C, Ortiz G. SAT-ETL-Integrator: an

Extract-Transform-Load Software for Satellite Big Data

Ingestion. Journal of Applied Remote Sensing, 14(1) (2020).
[11] Bahga, A., Madisetti, V.K., Madisetti, R.K. and Dugenske,

A. Software-Defined Things in Manufacturing Networks.

Journal of Software Engineering and Applications, 9 (2016)

425-438.

[12] Ta VD, Liu CM, Nkabinde GW. Big Data Stream Computing

In Healthcare Real-Time Analytics. Proc. IEEE International
Conference on Cloud Computing and Big Data Analysis

(ICCCBDA), (2016) 37.

[13] Lipic T, Skala K, Afgan E. Deciphering Big Data Stacks: an
Overview of Big Data Tools. Proc. International Workshop

on Big Data Analytics: Challenges, and Opportunities, 14

(2014).
[14] Ta-Shma P, Akbar A, Gerson-Golan G, Hadash G, Carrez F,

Moessner K. An Ingestion And Analytics Architecture For

Iot Applied To Smart City Use Cases. IEEE Internet of
Things Journal, 5(2) (2017) 765-74.

[15] Hurwitz, J., Nugent, A., Halper, F., and Kaufman, M., Big
Data for Dummies, John Wiley & Sons, Inc., New Jersey,

USA, (2013).

[16] Stolpe M. The Internet of Things: Opportunities and
Challenges for Distributed Data Analysis. ACM SIGKDD

Explorations Newsletter, 18 (1) (2016) 15-34.

[17] Merla P, Liang Y. Data Analysis Using Hadoop MapReduce
Environment. Proc. IEEE International Conference on Big

Data (Big Data), (2017) 4783.

[18] Cho W, Lim Y, Lee H, Varma MK, Lee M, Choi E. Big Data
Analysis with Interactive Visualization Using R Packages.

Proc. International Conference on Big Data Science and

Computing, (2014) 1.
[19] Mazumder S, Dhar S. Hadoop Ecosystem As Enterprise Big

Data Platform: Perspectives and Practices. International

Journal of Information Technology and Management, 17(4)
(2018) 334-48.

[20] Ranjan R. Streaming Big Data Processing In Datacenter

Clouds. IEEE Cloud Computing, 1(1) (2014) 78-83.
[21] The Amazon AWS website. [Online]. Available:

aws.amazon.com

[22] The IBM website. [Online]. Available:
https://www.ibm.com/cloud/blog/implementing-big-data-

platform-cloud

http://portal.acm.org/author_page.cfm?id=81309509146
http://portal.acm.org/author_page.cfm?id=81452607023
http://portal.acm.org/author_page.cfm?id=81100554717
http://portal.acm.org/author_page.cfm?id=81100109980
http://portal.acm.org/author_page.cfm?id=81350582809
http://portal.acm.org/author_page.cfm?id=81100290062
http://portal.acm.org/author_page.cfm?id=81100616904
https://www.ibm.com/cloud/blog/implementing-big-data-platform-cloud
https://www.ibm.com/cloud/blog/implementing-big-data-platform-cloud

Alrawda Abdullatif Abdulhaleem Hamid / IJCTT, 68(4), 233-237, 2020

237

[23] Gupta A, Tyagi S, Panwar N, Sachdeva S, Saxena U. NoSQL

Databases: Critical Analysis and Comparison. Proc.
International Conference on Computing and Communication

Technologies for Smart Nation (IC3TSN), (2017) 293.

[24] Seeger M, Ultra-Large-Sites S. Key-Value Stores: a Practical
Overview. Computer Science and Media, Stuttgart, (2009)

21.

[25] Kaur K, Rani R. Modeling and Querying Data in NoSQL
Databases. Proc. IEEE International Conference on Big Data,

(2013) 1.

[26] Phiri, H., Kunda, D., A Comparative Study of NoSQL and
Relational Database, Zambia Information Communication

Technology (ICT) Journal, 1(1) (2017).

[27] Bhuvan, N., Elayidom, M., A Technical Insight on the New
Generation Databases: NoSQL, International Journal of

Computer Application, 121(7) (2015).

[28] Zhang H, Chen G, Ooi BC, Tan KL, Zhang M. In-memory
Big Data Management and Processing: A Survey. IEEE

Transactions on Knowledge and Data Engineering. Vol.

27(7) (2015) 1920-48.
[29] Angles R, Gutierrez C. An Introduction to Graph Data

Management. Graph Data Management, (2018) 1-32.

[30] Angles R. The Property Graph Database Model. Proc. AMW,
(2018).

[31] The oracle-base website. [Online]. Available: https://oracle-

base.com/articles/12c/in-memory-column-store-12cr1
[32] Agrawal R, Kadadi A, Dai X, Andres F. Challenges and

Opportunities with Big Data Visualization. Proc.

International Conference on Management of Computational
and Collective Intelligence in Digital Ecosystems,7 (2015)

169.

[33] Caldarola EG, Rinaldi AM. Big Data Visualization Tools: A
Survey. Proc. International Conference on Data Science,

Technology and Applications, 6 (2017) 296.

[34] Lu, J., Data Analytics Research-Informed Teaching in a
Digital Technologies Curriculum, Informs Transactions on

Education, 20(2) (2020) 57–72.

https://oracle-base.com/articles/12c/in-memory-column-store-12cr1
https://oracle-base.com/articles/12c/in-memory-column-store-12cr1

